Review of Matrices

A matrix is a rectangular array of numbers that combines with other such arrays according to specific rules.

✓ The dimension of a matrix is given as rows x columns; i.e., $m \ge n$.

Matrix Multiplication

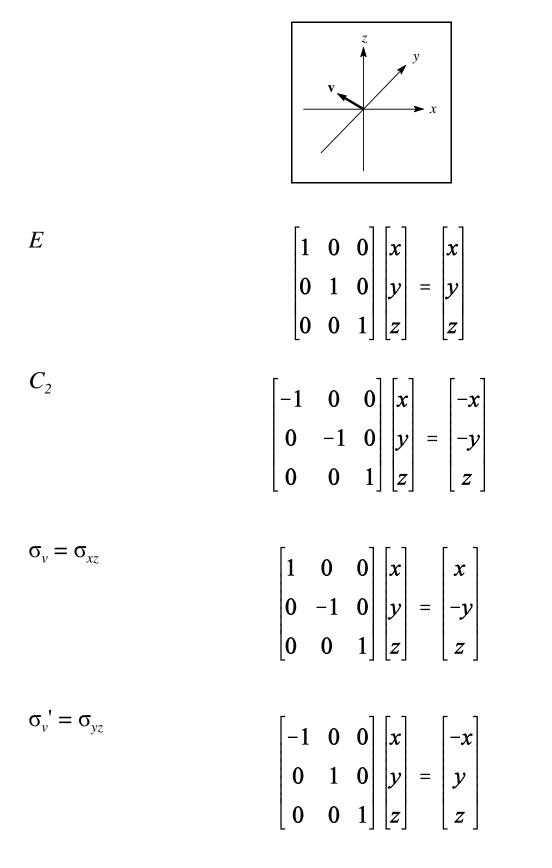
- If two matrices are to be multiplied together they must be *conformable*; i.e., the number of columns in the first (left) matrix must be the same as the number of rows in the second (right) matrix.
 - ✓ The product matrix has as many rows as the first matrix and as many columns as the second matrix.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

✓ The elements of the product matrix, c_{ij} , are the sums of the products $a_{ik}b_{kj}$ for all values of *k* from 1 to *m*; i.e.,

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) & (a_{11}b_{13} + a_{12}b_{23}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) & (a_{21}b_{13} + a_{22}b_{23}) \\ (a_{31}b_{11} + a_{32}b_{21}) & (a_{31}b_{12} + a_{32}b_{22}) & (a_{31}b_{13} + a_{32}b_{23}) \end{bmatrix}$$



A Representation with Matrices

C_{2v}	E	C_2	$\sigma_{_{\mathcal{V}}}$	σ_{v} '
_	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- ✓ These matrices combine with each other in the same ways as the operations, so they form a representation of the group.
- ✓ $\Gamma_{\rm m}$ is a reducible representation
- The *character* of a matrix (symbol chi, χ) is the sum of the elements along the left-to-right diagonal (the *trace*) of the matrix.

 $\chi(E) = 3$ $\chi(C_2) = -1$ $\chi(\sigma_v) = 1$ $\chi(\sigma_v') = 1$

- A more compact form of a reducible representation can be formed by using the characters of the full-matrix form of the representation.
 - \checkmark We will most often use this form of representation.
 - ✓ The character form of a representation does not by itself conform to the multiplication table of the group; only the original matrix form does this.

A Representation from the Traces (Characters) of the Matrices

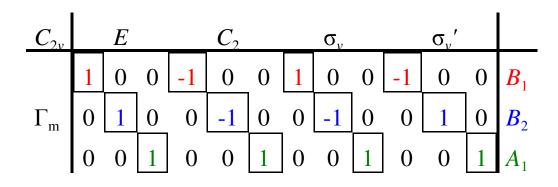
✓ The characters of Γ_v are the sums of the corresponding characters of the three irreducible representations $A_1 + B_1 + B_2$:

C_{2v}	E	C_2	σ_v	σ_{v}'
A_1	1	1	1	1
B_1	1	-1	1	-1
B_{2}	1	-1	-1	1
$\Gamma_{\rm v}$	3	-1	1	σ,' 1 -1 1 1

$$\square \Gamma_{v} = A_1 + B_1 + B_2$$

- ✓ Breaking down Γ_v into its component irreducible representations is called **reduction**.
- ✓ The species into which Γ_v reduces are the those by which the vectors **z**, **x**, and **y** transform, respectively.

Reduction of $\Gamma_{\rm m}$ by Block Diagonalization



- ✓ Each diagonal element, c_{ii} , of each operator matrix expresses how one of the coordinates *x*, *y*, or *z* is transformed by the operation.
 - → Each c_{11} element expresses the transformation of the *x* coordinate.
 - → Each c_{22} element expresses the transformation of the y coordinate.
 - → Each c_{33} element expresses the transformation of the *z* coordinate.
- ✓ The set of four c_{ii} elements with the same *i* (across a row) is an irreducible representation.
- ✓ The three irreducible representations found by block diagonalization of $Γ_m$ are the same as those found for $Γ_v$; i.e.,

$$\Gamma_{\rm m} = A_1 + B_1 + B_2 = \Gamma_{\rm v}$$

The reduction of a reducible representation in either full-matrix or character form gives the same set of component irreducible representations.

Dimensions of Representations

In a representation of matrices, such as Γ_m , the *dimension of the representation* is the order of the square matrices of which it is composed.

$$d\left(\Gamma_{\rm m}\right)=3$$

For a representation of characters, such as Γ_v , the dimension is the value of the character for the identity operation.

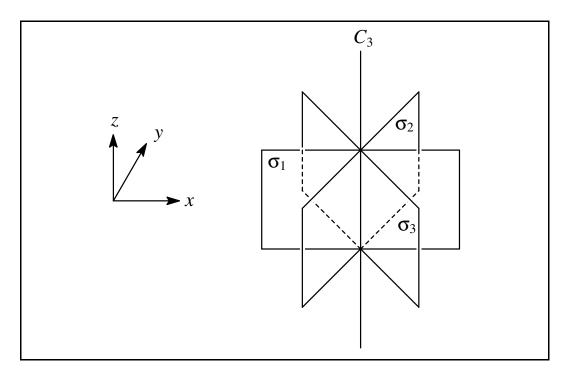
$$\chi(E) = 3 \quad \Rightarrow \quad d(\Gamma_v) = 3$$

The dimension of the reducible representation must equal the sum of the dimensions of all the irreducible representations of which it is composed.

$$d_r = \sum_i n_i d_i$$

More Complex Groups and Standard Character Tables

C_{3v}	E	$2C_{3}$	$3\sigma_v$		
A_1	1	1	1	Z	$x^2 + y^2$, z^2
A_2	1	1	-1	R_{z}	
E	2	-1	0	$(x, y) (R_x, R_y)$	$x^2 + y^2, z^2$ $(x^2 - y^2, xy)(xz, yz)$



- The group C_{3v} has:
 - ✓ Three classes of elements (symmetry operations).
 - \checkmark Three irreducible representations.
 - ✓ One irreducible representation has a dimension of $d_i = 2$ (*doubly degenerate*).
- The character table has a last column for *direct product transformations*.

Classes

- Geometrical Definition (Symmetry Groups): Operations in the same class can be converted into one another by changing the axis system through application of some symmetry operation of the group.
- Mathematical Definition (All Groups): The elements *A* and *B* belong to the same class if there is an element *X* within the group such that $X^{-1}AX = B$, where X^{-1} is the inverse of *X* (i.e., $XX^{-1} = X^{-1}X = E$).
 - ✓ If $X^{-1}AX = B$, we say that *B* is the similarity transform of *A* by *X*, or that *A* and *B* are *conjugate* to one another.
 - ✓ The element *X* may in some cases be the same as either *A* or *B*.

Classes of $C_{3\nu}$ by Similarity Transforms

C_{3v}	E	C_3	C_{3}^{2}	σ_1	σ_2	$ \begin{array}{c} \sigma_{3} \\ \sigma_{3} \\ \sigma_{2} \\ \sigma_{1} \\ C_{3}^{2} \\ C_{3} \\ E \end{array} $
E	E	C_3	C_{3}^{2}	σ_1	σ_2	σ_3
C_3	C_{3}	$C_3^{\ 2}$	E	σ_3	σ_1	σ_2
C_{3}^{2}	C_{3}^{2}	E	C_3	σ_2	σ_3	σ_1
σ_1	σ_1	σ_2	σ_3	E	C_3	C_{3}^{2}
σ_2	σ_2	σ_3	σ_1	C_{3}^{2}	E	C_3
σ_3	σ_3	σ_1	σ_2	C_3	C_{3}^{2}	E

Take the similarity transforms on C_3 to find all members in its class:

$$EC_{3}E = C_{3}$$

$$C_{3}^{2}C_{3}C_{3} = C_{3}^{2}C_{3}^{2} = C_{3}$$

$$C_{3}C_{3}C_{3}^{2} = C_{3}E = C_{3}$$

$$\sigma_{1}C_{3}\sigma_{1} = \sigma_{1}\sigma_{3} = C_{3}^{2}$$

$$\sigma_{2}C_{3}\sigma_{2} = \sigma_{2}\sigma_{1} = C_{3}^{2}$$

$$\sigma_{3}C_{3}\sigma_{3} = \sigma_{3}\sigma_{2} = C_{3}^{2} \qquad \checkmark \qquad \text{Only } C_{3} \text{ and } C_{3}^{2}$$

Take the similarity transforms on σ_1 to find all members in its class:

$$E \sigma_{1}E = \sigma_{1}$$

$$C_{3}^{2} \sigma_{1}C_{3} = C_{3}^{2} \sigma_{2} = \sigma_{3}$$

$$C_{3} \sigma_{1}C_{3}^{2} = C_{3} \sigma_{3} = \sigma_{2}$$

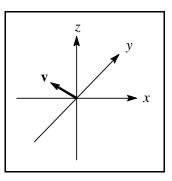
$$\sigma_{1} \sigma_{1} \sigma_{1} = \sigma_{1}E = \sigma_{1}$$

$$\sigma_{2} \sigma_{1} \sigma_{2} = \sigma_{1} C_{3} = \sigma_{2}$$

$$\sigma_{3} \sigma_{1} \sigma_{3} = \sigma_{1}C_{3}^{2} = \sigma_{3}$$

$$\checkmark \quad \text{Only } \sigma_{1}, \sigma_{2}, \text{ and } \sigma_{3}$$

Transformations of a General Vector in $C_{3\nu}$ The Need for a Doubly Degenerate Representation

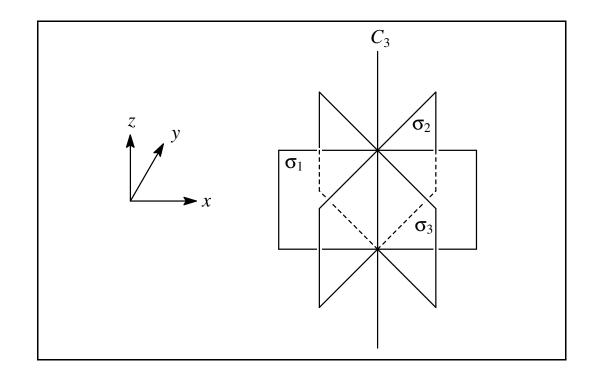


- No operation of $C_{3\nu}$ changes the *z* coordinate.
 - \checkmark Every operation involves an equation of the form

$$\begin{bmatrix} ? & ? & 0 \\ ? & ? & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ z \end{bmatrix}$$

- ✓ We only need to describe any changes in the projection of \mathbf{v} in the *xy* plane.
- The operator matrix for each operation is generally unique, but all operations in the same class have the same character from their operator matrices.
 - ✓ We only need to examine the effect of one operation in each class.

Transformations by *E* and $\sigma_1 = \sigma_{xz}$

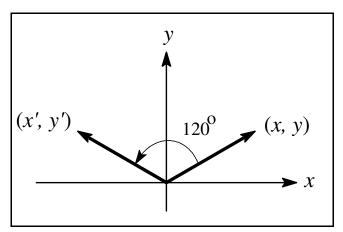


E

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

 $\sigma_1 = \sigma_{xz} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}$

Transformation by C_3



From trigonometry:

$$x' = \cos\frac{2\pi}{3}x - \sin\frac{2\pi}{3}y = -\frac{1}{2}x - \frac{\sqrt{3}}{2}y$$
$$y' = \sin\frac{2\pi}{3}x + \cos\frac{2\pi}{3}y = \frac{\sqrt{3}}{2}x - \frac{1}{2}y$$

Therefore, the transformation matrix has nonzero off-diagonal elements:

$$\begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \begin{bmatrix} \left(-\frac{x}{2} & -\frac{\sqrt{3}y}{2}\right)\\ \left(\frac{\sqrt{3}x}{2} & -\frac{y}{2}\right)\\ z \end{bmatrix} = \begin{bmatrix} x'\\ y'\\ z'\\ \end{bmatrix}$$

Reduction by Block Diagonalization

C_{3v}	E			C_3		(σ_v
	1 0	0	-1/2	-√ 3/2	0	1	0 0
$\Gamma_{\rm m}$	0 1	0	√3/2	-1/2	0	0 -	1 0
	0 0	1	0	0	1	0	0 1

- The blocks must be the same size across all three matrices.
 - ✓ The presence of nonzero, off-diagonal elements in the transformation matrix for C_3 restricts us to diagonalization into a 2x2 block and a 1x1 block.
 - ✓ For all three matrices we must adopt a scheme of block diagonalization that yields one set of 2x2 matrices and another set of 1x1 matrices.

Representations of Characters

Converting to representations of characters gives a doubly degenerate irreducible representation and a nondegenerate representation.

$$C_{3v}$$
 E
 $2C_3$
 $3\sigma_v$
 $\Gamma_{x,y} = E$
 2
 -1
 0

 $\Gamma_z = A_1$
 1
 1
 1

✓ Any property that transforms as E in C_{3v} will have a companion, with which it is degenerate, that will be symmetrically and energetically equivalent.

C_{3v}	E	$2C_{3}$	$3\sigma_{v}$		
A_1	1	1	1	Z.	$x^2 + y^2, z^2$ $(x^2 - y^2, xy)(xz, yz)$
A_2	1	1	-1	R_{z}	
E	2	-1	0	$(x, y) (R_x, R_y)$	$(x^2 - y^2, xy)(xz, yz)$

- ✓ Unit vectors **x** and **y** are degenerate in $C_{3\nu}$.
- ✓ Rotational vectors R_x , R_y are degenerate in C_{3y} .

Direct Product Listings

C_{3v}	E	$2C_{3}$	$3\sigma_{v}$		
A_1	1	1	1	z	$x^{2}+y^{2}, z^{2}$ $(x^{2}-y^{2}, xy)(xz, yz)$
A_2	1	1	-1	R_{z}	
E	2	-1	0	$(x, y) (R_x, R_y)$	$(x^2 - y^2, xy)(xz, yz)$

- The last column of typical character tables gives the transformation properties of direct products of vectors.
 - ✓ Among other things, these can be associated with the transformation properties of d orbitals in the point group.

Correspond to *d* orbitals: z^2 , $x^2 - y^2$, xy, xz, yz, $2z^2 - x^2 - y^2$

Do not correspond to *d* orbitals: x^2 , y^2 , $x^2 + y^2$, $x^2 + y^2 + z^2$

Complex-Conjugate Paired Irreducible Representations

Some groups have irreducible representations with imaginary characters in complex conjugate pairs:

 $C_n (n \ge 3), C_{nh} (n \ge 3), S_{2n}, T, T_h$

- ✓ The paired representations appear on successive lines in the character tables, joined by braces ({ }).
- ✓ Each pair is given the single Mulliken symbol of a doubly degenerate representation (e.g., $E, E_1, E_2, E', E'', E_g, E_u$).
- ✓ Each of the paired complex-conjugate representations is an irreducible representation in its own right.

Combining Complex-Conjugate Paired Representations

- It is sometimes convenient to add the two complex-conjugate representations to obtain a representation of real characters.
 - ✓ When the pair has ε and ε^* characters, where $\varepsilon = \exp(2\pi i/n)$, the following identities are used in taking the sum:

$$\varepsilon^p = \exp(2\pi p i/n) = \cos 2\pi p/n + i \sin 2\pi p/n$$

$$\varepsilon^{*p} = \exp(-2\pi p i/n) = \cos 2\pi p/n - i \sin 2\pi p/n$$

which combine to give

$$\varepsilon^p + \varepsilon^{*p} = 2\cos 2\pi p/n$$

Example: In C_3 , $\varepsilon = \exp(2\pi i/3) = \cos 2\pi/3 - i \sin 2\pi/3$ and $\varepsilon + \varepsilon^* = 2\cos 2\pi/3$.

C_3	E	C_3	C_{3}^{2}
E^{a}	1	3	*3
E^{b}	1	8*	3
$\{E\}$	2	$2\cos 2\pi/3$	$2\cos 2\pi/3$

If complex-conjugate paired representations are combined in this way, realize that the real-number representation is a *reducible* representation.

Mulliken Symbols Irreducible Representation Symbols

In non-linear groups:

- A nondegenerate; symmetric to $C_n(\chi_{C_n} > 0)$
- *B* nondegenerate; antisymmetric to $C_n(\chi_{C_n} < 0)$
- *E* doubly degenerate $(\chi_E = 2)$
- T triply degenerate $(\chi_E = 3)$
- G four-fold degenerate $(\chi_E = 4)$ in groups I and I_h
- *H* five-fold degenerate $(\chi_E = 5)$ in groups *I* and I_h

In linear groups $C_{\infty \nu}$ and $D_{\infty h}$:

 $\Sigma \equiv A$ nondegenerate; symmetric to $C_{\infty}(\chi_{C_{\infty}} = 1)$

 $\{\Pi, \Delta, \Phi\} \equiv E$ doubly degenerate $(\chi_E = 2)$

Mulliken Symbols Modifying Symbols

With any degeneracy in any centrosymmetric groups:

subscript g	(gerade) symmetric with respect to inversion
	$(\chi_i > 0)$
subscript u	(ungerade) antisymmetric with respect to inversion
	$(\chi_i < 0)$

With any degeneracy in non-centrosymmetric nonlinear groups:

prime (')	symmetric with respect to $\sigma_h (\chi_{\sigma_h} > 0)$
double prime (")	antisymmetric with respect to $\sigma_h (\chi_{\sigma_h} < 0)$

With nondegenerate representations in nonlinear groups:

subscript 1	symmetric with respect to C_m ($m < n$) or σ_v ($\chi_{C_m} > 0$)
	or $\chi_{\sigma_{\nu}} > 0$)
subscript 2	antisymmetric with respect to C_m ($m < n$) or σ_v
	$(\chi_{C_m} < 0 \text{ or } \chi_{\sigma_v} < 0)$

With nondegenerate representations in linear groups (C_{wv}, D_{wh}) :

superscript + symmetric with respect to $\infty \sigma_v$ or $\infty C_2 (\chi_{\sigma_v} = 1 \text{ or} \chi_{C_2} = 1)$ superscript - antisymmetric with respect to $\infty \sigma_v$ or $\infty C_2 (\chi_{\sigma_v} = -1 \text{ or } \chi_{C_2} = -1)$